

Reg. No.:

Question Paper Code: X 67615

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Second Semester

Civil Engineering

MA 1151 - MATHEMATICS - II

(Common to all Branches)

(Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Find the Laplace transform of $\frac{\sin at}{t}$.
- 2. Find the inverse Laplace transform of $\frac{s+1}{s^2-2s}$.
- 3. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then find $\nabla \cdot \hat{r}$ and $\nabla \times \hat{r}$
- 4. Find the directional derivation of $f(x, y, z) = xy^2 + yz^2$ at the point (2, -1, -1) in the direction of the vector $\hat{i} + 2\hat{j} 2\hat{k}$
- 5. State whether or not $f(z) = \vec{z}$ is an analytic function.
- 6. Find the image of the circle |z| = 2 under the transformation w = 3z.
- 7. Evaluate $\int_{0}^{2} \int_{0}^{x} (x+y) dx dy$.
- 8. Evaluate $\iint e^{-x-y} dxdy$ over R, where R is the region in the first quadrant in which $x + y \le 1$.
- 9. Evaluate $\int_{C}^{z^2+1} dz$, where C is a circle of unit radius and centre at z=i.
- 10. Find the Laurent's series for the function $f(z) = z^2 e^{1/z}$ about z = 0.

PART - B

 $(5\times16=80 \text{ Marks})$

- 11. a) i) Find the Laplace transform of the following functions
 - 1) $t^2e^{-1}\cos t$

$$\frac{e^{at} - \cos bt}{t}.$$
 (8)

- ii) Using convolution theorem, find $L^{-1}\left\{\frac{1}{\left(s^2+a^2\right)^2}\right\}$. (8)
- b) i) Find the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a \end{cases}$ f(t + 2a) = f(t). (8)
 - ii) Using Laplace transform, solve $\frac{d^2y}{dt^2} + y = \sin 2t$, with y(0) = 0 and y'(0) = 0. (8)
- 12. a) i) Evaluate $\iint_S \vec{F} \cdot dS$, where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies in the first octant. (8)
 - ii) Verify Stoke's theorem for $\vec{F} = y\hat{i} + 2yz\hat{j} + y^2\hat{k}$, where S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and C is the circular boundary on the XOY plane. (8)

(OR)

- b) i) Verify Green's theorem in a plane with respect to $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$, where C is the boundary of the region in the XOY-plane enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = 1$. (8)
 - ii) Find the work done by the force $\vec{F} = (x^2 + y^2)\hat{i} + (x^2 + z^2)\hat{j} + y\hat{k}$, when it moves a particle along the upper half of the circle $x^2 + y^2 = 1$ from the point (-1, 0) to the point (1, 0). (8)
- 13. a) i) Determine the analytic function f(z) = u + iv given that $u = e^{x} (x \cos y y \sin y)$ (8)
 - ii) Find the bi-linear transformation which maps the points (-1, 0, 1) of the z-plane into the points (0 i, 3i) of the w-plane. (8)

(OR)

- b) i) If w = f(z) is an analytic function of z, prove that $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$. (8)
 - ii) Find the image of the circle |z-3i|=3 under the transformation w=1/z. (8)

- 14. a) i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}.$ (8)
 - ii) Find by double integration the area between the two parabolas $3y^2 = 25x$ and $5x^2 = 9y$. (8)

(OR)

- b) i) Evaluate by changing to polar WcfX]bUNg the integral " (8) $\int\limits_{0}^{a}\int\limits_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}y+y^{3}\right)dx\,dy.$
 - ii) Evaluate $\iint_{\mathbb{R}} \frac{1}{x^2 + y^2 + z^2} dxdydz$ throughout the volume of the sphere $x^2 + y^2 + z^2 = a^2.$ (8)
- 15. a) i) Using Cauchy's integral formula, evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$, where C is the circle |z| = 4. (8)
 - ii) Evaluate, using contour integration, $\int\limits_0^{2\pi} \frac{d\theta}{1-2p\cos\theta+p^2} \ , \ 0$
 - b) i) Find the Laurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the regions 1 < |z+1| < 2 and |z+1| > 2. (8)
 - ii) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$, using contour integration where a > b > 0. (8)